Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials
نویسندگان
چکیده
Microorganisms are the main engines of elemental cycling in this planet and therefore have a profound impact on both organic and mineral substrates. As such, past and present human-made structures and cultural heritage can be negatively affected by microbial activity. Processes such as bioweathering (rocks and minerals), biodeterioration (organic substrates) or biocorrosion (metals) participate to the degradation or structural damage of construction and heritage materials. This structural damage can cause major economic losses (e.g. replacement of cast-iron pipes in water distribution networks), and in the case of heritage materials, the entire loss of invaluable objects or monuments. Even though one can regard the influence of microbial activity on construction and heritage materials as negative, remarkably, the same metabolic pathways involved in degradation can be exploited to increase the stability of these materials.
منابع مشابه
Construction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa
Background: Pseudomonas protein expression in E. coli is known to be a setback due to signifi cant genetic variation and absence of several genetic elements in E. coli for regulation and activation of Pseudomonas proteins. Modifi cations in promoter/repressor system and shuttle plasmid maintenance have made the expression of stable and active Pseudomonas protein possible in bot...
متن کاملNone-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...
متن کاملNone-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...
متن کاملConstruction Biotechnology: a new area of biotechnological research and applications.
A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, susta...
متن کاملApplication of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.
As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important ...
متن کامل